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Measuring Statistical Dependences in a Time Series 
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We propose two methods to measure all (linear and nonlinear) statistical 
dependences in a stationary time series. Presuming ergodicity, the measures can 
be obtained from efficient numerical algorithms. 
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1. I N T R O D U C T I O N  

The measurement of statistical dependences is one of the fundamental 
problems in time series analysis. For  example, given a finite data sequence, 
there is reason to look for a predictor if there are statistical dependences 
between past and future states. In data compressing coding systems 
statistical dependences between letters are used to reduce the bit rate (see, 
e.g., refs. 2, 13, and 22). 

There are several quantities and algorithms to measure statistical 
dependences. All of them have their advantages and limitations. In 
Section 2 we give a short review of some well-known "classical" methods 
which facilitates an evaluation of our procedures. 

In Section 3 we propose our first method. It is characterized by trans- 
forming the time series to its relative rank numbers, yielding a transformed 
series which is uniformly distributed with values in the interval ] 0, 1 ], and 
then estimating a quantity called generalized mutual information (GMI).  It 
is defined on the base of R6nyi's generalized entropy of second order. (4'17/ 
The transformation to (relative) rank numbers is crucial for our approach, 
because in this case we can guarantee that the G M I  is nonnegative and 
equals zero if and only if there are no (linear or nonlinear) statistical 
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dependences. If the one-dimensional distribution is not uniform, then we 
cannot generally conclude from a vanishing GMI to statistical inde- 
pendence. On the other hand, the GMI  indicates determinism in the time 
series on a given coarse-grained level. 

Shannon's information measure would always, i.e., for an arbitrary 
one-dimensional distribution of the series, provide a nonnegative mutual 
information, which equals zero iff there are no statistical dependences, and 
thus no transformation would be required. However, we prefer to use 
R6nyi's information measure because it can more easily be estimated using 
the Grassberger-Procaccia-Takens algorithm (GPTA), which is well 
known from calculating the correlation dimension of a fractal measure. ~176 

In contrast to the first method, our second method (see Section 4) 
directly works also for nonuniform one-dimensional distributions of the 
data. Hence no transformation of the original data is required. Moreover, 
the method inquires into statistical dependences between a past vector and 
a future vector of states, which is more general than in our first method, 
where we have only a scalar future state. The quantity estimated is called 
"mutual account." It could be considered as a kind of contingency which 
is properly standardized. The mutual account can be estimated from the 
data sequence by the GPTA and a modified GPTA. In the latter case we 
have to count a triple of (D + d)-, D-, and d-dimensional points, originat- 
ing from an embedding of the data with delay coordinates, such that the 
distance of the second point to a D-dimensional projection of the first point 
and that of the third point to a d-dimensional projection of the first point 
are each less than a certain threshold. This algorithm works, like the 
GPTA, for small values of the threshold. The usefulness of our methods is 
illustrated for several simple examples, including white noise and chaotic 
1D maps. 

2. Q U A N T I T I E S  M E A S U R I N G  STAT IST ICAL  D E P E N D E N C E S  

Prel iminaries.  Consider a stationary time series {X,}, where X, is 
a real-valued random variable representing the observation xt made at time 
t. The series is assumed to be time-discrete, and X, should be, as a rule, 
discrete as well: xt e {x( 1 ), x(2) ..... x(k)}. This is the typical case in practice, 
where a continuous signal is sampled with a certain sampling period and 
recorded using an analog digital converter with k quantization levels. 

Let Pm denote the probability that X,- -x(m).  For a given time lag z, 
X, and Xt+~ are said to be statistically independent if 

pm.(Z)=pmp,, for all m , n = l ,  2 ..... k (1) 
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with the joint probability Pmn('C) ---- prob{Xt = x(m), X,+~ = x(n)}. If (1) 
fails, then we have statistical dependences, and in this paper we propose 
methods to measure them. But first of all we briefly report on some 
well-known measures to motivate our approach. 

Corre lat ion  Funct ion .  The most common measure of statistical 
dependences in a stationary time series {Xt} is the autocorrelation function 
(ACF) 

< x , x , + ~ ) -  <x)  2 
c o r ( X , , X , + , ) -  ( X 2 } _  ( X ) 2  (2) 

where (X ,}  = (X,+~} = ( X }  is the mean value of X,. Of course, in the 
stationary case cor is a function of ~ only. The ACF can be estimated 
directly from the data {xt} without any partitioning (quantization, coarse- 
graining, classification), which is advantageous compared to some other 
methods described below. Moreover, there are fast algorithms for estimat- 
ing the ACF of a finite series {Xt},r=l . For instance, the F F T  (fast Fourier 
transformation) method yields cot(X,, X,+, )  for different ~ from two FFTs 
and a squared magnitude (see, e.g., ref. 16). However, the ACF measures 
only linear dependences, which are the only ones for very special distribu- 
tions of (X,  Xt+~), e.g., jointly normal. To learn anything about all 
(including nonlinear) statistical dependences, in general, the correlations of 
higher moments cor(X m, Jf~'+ ~) have to be considered as well. There are no 
statistical dependences iff these correlations vanish for all m, n = 1, 2,..., 
k -  1.  (17) Testing this for large k would be rather time consuming. 

Mutual Information. Statistical dependence can be measured by 
the mutual information 

I(r)  = H1 - (H2(r) -- H1) (3) 

with the Shannon entropies 
k k 

HI = - ~ p.  log Pn and H2(r) = - ~ pmn(T) log Pm,,(~) (4) 
n =  l m , n =  l 

I(r) represents the amount  of information on X,+~ that is contained in X~ 
and vice versa. We always have 

0 ~< I(r)  ~< H 1 (5) 

where I(T) = 0 iff X, and X,+ ~ are statistically independent, and I(r)  = HI 
iff X,+,  follows unequivocally from X~. (~7) Moreover, it can be rewritten as 

k pm,(V) 
I ( r ) =  Z p m , ( ~ ) l o g - -  (6) 

m , n  = 1 P~ P, 
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Hence, it can be considered as the information we gain if the joint 
probabilities {PmPn}m,n (hypothesis on independence) are replaced by 
{Pmn(~)}m,n (real joint distribution). 

The difficulty in calculating mutual information from a finite time 
series {Xt} f=l is in estimating joint probabilities Pmn from histograms or by 
any less "naive" procedure (see, e.g., ref. 19). If k-- the number of possible 
values of X,--is large (say k2> T/10), a coarse-graining of the plane 
spanned by xt and x ,+ ,  has to be used to have good statistics. However, 
the partition must be fine enough to follow changes of Pmn(Z) and not to 
underestimate I(r). 

Fraser and Swinney (7) proposed a rather sophisticated algorithm that 
covers the ( x ,  x,+~) plane by a sequence of partitions {Gi} such that each 
partition is a rectangular grid generated by dividing each axis into k = 2 i 
equiprobable segments, and Gi+ 1 is a refinement of G i yielding smaller par- 
tition elements of the boxes of Gi that are characterized by a substructure. 
This method could be improved by averaging over mutual information 
calculated from partitions which are carefully shifted in a certain region of 
state space to average the influence of the position of the partition on the 
mutual information. ~ However, this procedure would be, in general, 
rather time consuming. It is the aim of this paper to give an alternative to 
these proposals (see Section 3). Our ideas are based on another quantity, 
which is given as follows. 

Mean Square Cont ingency. We could also take the mean square 
contingency (see, e.g., ref. 17) 

k [pmn(Z)__pmp,]2 ~p2(z) = ~ (7) 
m , n  = 1 Pm Pn 

in order to measure statistical dependences. Obviously, it vanishes iff X, 
and X,+ ~ are statistically independent. Moreover, we always have 

0 ~ ~2(~) ~< k -  1 (8) 

where the upper bound is attained iff Xt+~ is a function of Xr which is the 
deterministic case. The principal problems in calculating the contingency are 
the same as in the case of mutual information. However, in the following 
sections we propose two methods which do not need a partition. 

3. FIRST M E T H O D :  GENERALIZED M U T U A L  I N F O R M A T I O N  

B a s i c  T h e o r e m .  Consider a stationary discrete time series {Xt} 
such that X, could be one of k different values x(n), n = 1, 2 ..... k. We now 
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ask for statistical dependences between a D-dimensional vector of "past" 
states X, = (X~-oo_l ..... X , -oo)  and one "future" state X~+,. Here D = 1, 2, 
3,..; OD- 1 > "'" > O~ > O0 = 0; and v ~> 0. Denote the joint probabilities 

Pm~ l ...... 0,,('r) =prob{X,_o~_l =X(mD_I),..., X~ oo=X(mo), X,+~ =x(n)} 

where m D 1,---, m0, n = 1, 2,..., k. For short we set PmD-I . . . . . .  0,n(27) = - P m n ( ' r )  �9 
Moreover, we use the abbreviation p m = ~ = ~ p m , ( Z ) ,  and write 

k 
~-~k a s  ~-~,m = i '  m D - 1 , . . . , m o ~  i 

We now define a contingency 

k 
~o2(z) = ~ [P""(z) - -  Pmp~]2 (9) 

. . . .  1 Pmo-I "'" PmoPn 

It can be rewritten as 

opt(z)= Z - E  (10) 
. . . .  lPmD-I"''PmoP, m=lP '~  l ' ' 'Pmo 

Note that (9) is not the straightforward generalization of (7), because we 
use I-ID=-01 P-,i instead of PmD-j . . . . . .  0=pin in the denominator, which is 
crucial for our approach. From the definition (9) we immediately see that 
r and q02D(Z)=0 iff X, and Xt+~ are independent [i.e., iff 
pmn(Z)=pmp,  for all re, n]. For D = I ,  Eq. (9) can be replaced by (7) 
because ~o~(v) = r 

Now we assume that Xr is uniformly distributed, i.e., PmD I . . . .  

= P~o = P, = 1/k = e. Hence (10) can be rewritten as 

= ( D +  

Consider now the quantity 

k k 

Z P mo( ) Z (11) 
In ,n  = 1 m = l  

I(DZ)(Q = H~2)_,-,(2) trt D+ I(Z)-- H(D 2) ) (12) 

where the generalized R6nyi entropies of second order (see, e.g., refs. 17 
and 4) are involved, 

H~ 2)= - l o g Z p  2, H(D 2)= --1ogZ Pr,,2 --D+/4(2) l (z)= --log ~ pZn(z ) (13) 
/7 In nl, n 

Note that H I 2 ) = - l o g e  due to the proposed uniform one-dimensional 
distribution. We call I~)(z) the generalized mutual information (GMI), in 
analogy to the mutual information (3). However, the interpretation of the 
GMI cannot be performed in total analogy to the mutual information. 

822/73/3-4-9 
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The contingency (11) is related to the GMI, 

{ ) I )(r)=log\e DZmp /-1 =log eZ P (14) 

From (14) we see that I~)(~)~>0 because q~2(r)~>0, and from (9), (14) it 
follows that I~)(~)= 0 iff X, and X,+~ are independent. Moreover, we have 

(2) HD+I(Z ) H(~)~>0, which we deduce from 

rrl m , ? t  

The equality holds iff X,+~ follows unequivocally from X,, i.e., iffpm . = p., 
or 0 for all n = 1, 2,..., k. Obviously I~) (0)=  H{ 2). Thus we have shown the 
following theorem: 

Suppose a stationary discrete time series X, with k uniformly distributed 
states, i.e., p r o b { X , = x ( n ) }  = l/k,  n=  1, 2,..., k. Then the generalized 
mutual information (12) between a D ( = l ,  2,... )-dimensional vector 
X ,=  (X,_oo ~ ..... X,_oo) and X,+~ satisfies the relation 

0 ~< I~)(~) ~< HI  2) = log k (15) 
for time lags ( ~ D _ I  > " ' "  > • 1 > 0 0 = 0  and z>~O. Moreover, we have 
I~ ) (~ )=0  if and only if X~ and X,+~ are statistically independent, and 
l~ ) ( z )  =log  k if and only if X,+~ follows unequivocally from X,. 

Remarks. It should be noted that I~)(~) as defined in (12) and (13) 
might be negative if X, is not uniformly distributed. (17) Moreover, if X t and 
X, + ~ are statistically independent, then I~ / (~)=  0 for an arbitrary distribu- 
tion of X,. However, if X, is not uniformly distributed, then from I~)(~)= 0 
we cannot deduce that X, and X,+~ are statistically independent, as the 
following example shows: Suppose that the random vector (X, Y) has the 
joint distribution p u = - l / 2 + 2 p - p 2 ~  p 2 2 = l / 2 - p  2, and p~2=p2~-- 

1/2 - p + p2 with 1 - l /x/2 < p < 1/,,/2. Then I" and Y have the same dis- 
tribution p~ = p~ + Plz = P ~  + PzI = t7 and P2 = P22 + P12 = P22 + _,021 = 
1 -  p. With these expressions we get 

1123= 2H~2)__ H(22) - -  - 2  log(p~ + z 2 2 2 2 102) -t- log(p u + P12 -b P21 -t- P22)  = 0 

This means that the GMI equals zero for all p c  [1 - 1/.,/2, l /x /2  ]. On the 
other hand, X and Y are statistically independent (i.e., P,,n = prop, for 
m, n = 1, 2) only for p = 1/2. Consequently, the GMI is, in general, no 
appropriate measure of statistical dependence. That is why we propose to 
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transform a nonuniform series to a uniform one and then to estimate the 
GMI. How to perform the transformation and some of its consequences 
will be discussed later in this section. First let us comment on an algorithm 
to estimate the sums over squared joint probabilities in (14). 

The Grassberger/Procaccia/Takens Algorithm (GPTA). The 
GPTA was originally used to calculate fractal (information) dimensions of 
probability measures defined on chaotic (strange) attractors, or to estimate 
generalized metric entropies. (9'2~ It is based on the following idea: 

Suppose a stationary continuous time series {Y,}F=~ and a corre- 
sponding realization (data sequence) {Y,}T=I. Consider a D-dimensional 
embedding of the data with time delay coordinates 

{y,}Ll+o~ , (16) 

where Y~=(Y,-o~ , ..... Yt o0), 0 = O o < O 1 <  . - . < O D _ I .  Let us assume 
that the series is standardized with real values between 0 and 1. Then cover 
the D-dimensional cube [0, 1] x . . .  x [0, 1] with an e-partition /~D,~, 
which should denote a rectangular grid of k D boxes generated by dividing 
each axis into k segments of equal size e = 1/k, 

flo, e=-{Bm} km=l with Bm=Bmd_,•  ... XBmo (17) 

where Bm= ](m - 1)e, me] for m = 1, 2,..., k. 
Consider a point y,~ of the series (16) and let Bm(,~ ) denote the box of 

flD,~ containing Yt~. We assume that for a sufficiently small value of e the 
probability Pm(t~ for finding any point of (16) in Bin(,1 ) does not essentially 
change if the box is shifted in an e-neighborhood of Ytx. Then this probabil- 
ity can be estimated from the time average, presuming ergodicity, as 

T 
pm(~ll~--CD,~/2(tl) = lim T -1 2 J/~(e/2--llYtl--ytz[[max) (18) 

T ~ o o  t 2 =  l + O D _  1 

where we use the Heaviside function J r ( x ) = 0  if x 4 0  and ~ ( x ) =  1 if 
x > 0, [t" [Im~x denotes the maximum norm in [R D, and e is assumed to be 
"small." Consider now a second time average over all probabilities p~(,~), 
which leads to the so-called correlation integral, (9'2~ 

T 
CD, e/2 = lim T 1 2 CD, e/2(tI) 

T ~ 3 o  t I = I + O D  I 

= (CD, e/2(tl))q (19) 

Summarizing (18) and (19), we have 

CD,~/2 = lim CD,~/2,r 
T ~ o : ?  
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with 

CD,8/Z,T=N~o:a 1 # {(t,, t2)with IlY,2--Y,lllm,x <e/Z} (20) 

Herein # denotes the cardinality of the set, 1 + 0 D_ , <<. t, < T, t, < t 2 <~ T, 
and the total number of pairs is 

( T - O ~ _ , ) ( T - O , ,  , - 1 )  
Ntota I - (21) 

2 

Due to the presumed ergodicity, the time average (19) can be alternatively 
written as a space average. Hence from (18) and (19) we obtain 

k 

CD:/2,r~-- ~, p2  for T ~ o v ,  e ~ 0  (22) 
l n = I  

The estimation of ~m p2 from the correlation integral (20) has computa- 
tional advantages because we need no explicit partitioning of the state 
space. Of course, for D = 1 we could directly set 5Zm p2m = e because of the 
assumed uniform one-dimensional distribution. Thus, according to (22), we 
would also set Cl:/2.r~-e, though we obtain from a more sophisticated 
consideration that C1,~/2 = g(1 - e/4). 

A similar algorithm works to estimate 

k 

E P2mn('~)"~CD+I:/2. T('C) for T ~ c ~ ,  e ~ 0  (23) 
m , n  = i 

Y t :  (Yt--OD-I'"" using a ( D +  1)-dimensional embedding of the data: 

Y,-oo,  Yt++)" 
Now we can express the generalized mutual information (14) as 

I~)(z)  ~ log" _ _ , C D  +1 ~/2( "g ) 
Co, e,/2 C,, ~/2 

for e-- ,0 (24) 

For  practical implementations and discussions of statistical fluctuations 
in estimating the correlation integral we refer to refs. 1, 8, 10, 18, and 21. 

T r a n s f o r m a t i o n  t o  a U n i f o r m  D i s t r i b u t i o n .  As we have 
shown above, our method would not work, in general, if the one-dimen- 
sional distribution of the time series is not the uniform distribution. 
Nevertheless, if we have no uniform distribution, then we propose to 
transform the original series 

{y,}7=, (25) 
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to a series 

(,',}r= 1 (26) 

such that the empirical distribution of (26) is uniform, and then to apply 
our method to (26) instead of (25). The effect of this transformation can be 
compared to that of the method of Fraser, ~71 because it would be the same 
to use a nonuniform partition with finer partition elements in the regions 
of phase space which have larger statistical weight, or to transform the data 
to a uniform distribution and then to use a uniform partition which 
corresponds to a fixed distance parameter e in the GPTA. 

If Y, is continuous, then the transformation h: y,--+ rt is the distribu- 
tion function of Y,. This transformation is almost everywhere invertible 
and hence the statistical dependences of (25) are reflected in the trans- 
formed series (26) and vice versa. Moreover, due to the transformation h 
the generalized mutual information (24) becomes invariant with respect to 
any (possibly nonlinear but invertible) distortion g of the original signal. 
This is because the series (25) and a series {g(y,)}r= 1 would provide the 
same  uniformly distributed series (26). 

Now let us suppose a more practical situation where a continuous 
signal is sampled with a certain sampling period and recorded using an 
analog digital convecter with k quantization levels. Hence (25) should be 
considered as a discrete sequence with y,E {1, 2,...,k} rather than y~e~.  
An invertible transformation to a uniform empirical distribution in ] 0, 1 ] 
would be possible if all data in (25) are different, i.e., Y,I =/= Y,2 if tl va t2. It 
can easily be done by transforming the data (25) to their relative rank 
numbers, 

# {/with 1 ~<l~ T, yt~<y,} 
r e -  for t = 1, 2,..., T (27) 

T 

using any sorting algorithm (e.g., quicksort). 
However, the typical situation is that some values of a discrete series 

are equal. For instance, think of a time series which is recorded using an 
8-bit analog/digital converter. Then necessarily there are equal values in the 
record if its length is T >  k = 256, and the above transformation would not 
provide the desired uniform distribution. In this case we propose to dis- 
tinguish arbitrarily between equal values of the original series (25). For 
instance, i fy tE  {1, 2 ..... k} and l values Ytl, Yt2 . . . . .  Y,t of (25) are equal, then 
set Y,2 --+ Y,1 + 1/(I + 1 ),..., y,, --+ yq +//(1 + 1). Obviously we now have a 
series in which all data are different, and the corresponding sequence of 
relative rank numbers has the desired uniform distribution in ]0, 1 ]. To 
make this arbitrariness of data transformation unimportant, we must 
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guarantee that the distance parameter e in the GPTA applied to the 
transformed series (26) is larger than Omaxeq. Here e u denotes the relative 
quantization error (in our example eq= 1/256) of the original data and 
~)max = Idh/dx] m a x  is the maximum value of the one-dimensional distribution 
density of the original data. In practice we would set ~max = leq . . . .  /T, 
where leq . . . .  = max,{lcq, t}, leq,, = # {l with 1 ~l~< T, y , =  y,}, which is the 
maximum number of equal points in the series (25). In a forthcoming 
paper (~2) we will discuss this problem in more detail. 

R e m a r k s  a n d  R e f e r e n c e s .  The expression (24) was already 
proposed by Grassberger etal. Ca~ They wrote that forecasting z = 1 time 
step ahead, e.g., would be possible only if the argument of the log in (24) 
is significantly larger than one, and any sort of correlations would imply 
CD,,/C~,~> 1. However, from the above considerations we see that, in 
general, I~)(~) might be zero also if there are statistical dependences. 
Nevertheless, from the above theorem we conclude that the statement in 
ref. 10 is right if II, is uniformly distributed. 

Moreover, it should be noted that Brock, Dechert, and Scheinkman 
(see refs. 18 and 3 and the references therein) have already considered 
the behavior of Co+I.~(1)/Cv,~ as D varies, to measure the depar- 
tures from independence between Y~=(Y,-D+I,- . . ,  Y,) and Y~+~= 
(Y, D+~ ..... Y,, Y,+~). Using the maximum norm, this ratio was 
considered as an estimate of the conditional probability that 
t ly~+l -y~+l l lma~<e  given that Ily~-Y~llmax<e. Further, they 
considered the equality 

CD,~=C~ (28) 

as a criterion for testing independence of a time series. This equality 
was found to hold for any D--2 ,  3,... if the series is "independently and 
identically distributed" (IID). Then 

converges for T--* oe in distribution to the normal distribution ~o, v with 
mean 0 and the variance VD,~,T. The, latter can be consistently estimated 
from the data, and the ratio Bo,~.T/(Vo,~,r) 1/2 converges in distribution to 
~o.1- The IID hypothesis can be rejected if this ratio differs from zero, 
where the significance level can be read off from ~o,1. However, Dechert 
(see ref. 3 and the references therein) has already recognized that from (28) 
we cannot, in general, conclude that the series is IID. Nevertheless, our 
theorem says that we can conclude from (28) to independence (on the 
coarse-grained level given by ~) if we have a uniform one-dimensional 
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distribution. Moreover, we consider a profound information measure of the 
distance from the "purely stochastic case" and, on the other hand, from the 
"purely deterministic case." 

If we use in (12) Shannon's information measure (4) instead of the 
generalized R6nyi entropy (13), then we have an appropriate measure of 
statistical dependence also for nonuniform distributions of Xt. For  D = 1 
this is I(z) of Eq. (6). Pawelzik and Schuster ~15~ proposed an algorithm to 
estimate (6) on the basis of the so-called generalized correlation integrals 

, / t I 

where cD.~(tl) is given by (18). For  q =  2 and a uniform marginal distribu- 
tion this leads to our proposals and for q --* 1 this leads to that in ref. 15. 
However, we prefer to use the GMI (24) because it should have better 
statistics and somewhat less computation effort. The transformation of the 
data to a uniform marginal distribution is a well-known trick in order to 
enhance the significance of correlation dimension estimates (see, e.g., refs. 
7 and 10), and it should improve the procedure in ref. 15 as well. However, 
the unification is not necessary in the case q-~ 1, which is in contrast to 
our case q = 2. But there is a second point; due to the transformation to a 
uniform marginal distribution, the GMI  (as well as any other measure) 
becomes invariant with respect to any distortions of the signal, as was 
already mentioned above. 

Example 1: White Noise. Consider a continuous time series with 
no statistical dependences (white noise). Moreover, X t should be uniformly 
distributed in [0 ,1 ] .  Then (Xt, Xt+~) is uniformly distributed in 
[0, 1 ] x [0, 1] for v ~> 1. Using an e-partition of the unit square, we obtain 
p m , ( r ) = e  2, and from (14) it follows that I~2)(z)=0. On the other hand, 
using the GPTA, we would obtain C2,~/2(z)=e2(1-e/2+e2/16) for 
e~< 1, which follows from simple calculation. Hence the GPTA would 
provide in the m e a n / ~ 2 ) ( z )  "~ log[e-2C2,d2(z)] = log(1 - e/2 + e2/16), which 
approaches zero with e. 

Example2: Chaotic Signal. Consider a chaotic time series, 
representing successive measurements of a state variable of a chaotic 
dynamical system. Then we have 

lira lim tog[CD.JCD+I,~(Z)] = zh (2) 

w h e r e  h (2) is a positive finite value which represents the second-order 
metric entropy of the dynamical system generating the chaotic signal (see, 
e.g., ref. 6). (Here we assume that the time lags are regularly spaced, i.e., 
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Oi=  iv for i =  0, 1 ..... D -  1.) Consequently from (24) we obtain I~)(~) -~ 
- l o g  5 - r h  (2~ for sufficiently small values of e. (For a "noisy" signal we 
have h(2)= ~ ,  and for a nonchaotic deterministic signal h~2)=0.) If 
becomes large, then I~)(r )  typically decays with a rate less than h (2), 
because we have an information gain due to "foldings" which become 
relevant on a given coarse-grained level 5 > 0. 

E x a m p l e  3: Q u a d r a t i c  M a p  xt+ 1 = f ( x ~ )  = 4x,(1 - xt). This map 
is known to generate chaotic motions for almost all initial values 
Xo ~ [0, 1] with respect to Lebesgue measure (see, e.g., ref. 5). The natural 
invariant measure of f is given by the density function Q(x)= 
1 / { r c [ x ( 1 - x ) ]  1/2} for 0 < x < l .  For  an application of our method to 
a typical chaotic time series {f ' (xo)},  (e.g., Xo = 1/Tt), we first have to 
transform the data to get a uniform one-dimensional distribution. This can 
be done analytically by the distribution function 

y = h(x) = O(z) dz = (2 arcsin xfx)/rc 

Then we have g o h = h o f ,  with the tent map g ( y t ) = y t + l = 2 y t  if 
0 < Yt < 1/2 and g(yt)  = 2 - 2y, if 1/2 < Yt < 1. The graph of g corresponds 
to the rank-delay representation r ,+l  over r t obtained from the original 
data according to (27), and the invariant measure of g is the Lebesgue 
measure on [0, 1]. [The invariant density of g is given by Qg(y)= 
Q(h- l (y ) )  Idh 1/dyl = 1, where h - I  is the inverse of h and y ~  (0, 1).] 

Now we can analytically obtain the correlation integral C2,e /2 (1) :  

First consider the points ( y , , y , + l ) ~  2 with e / 4 < y , < l / 2 - 3 e / 8  or 
1/2 + 3e/8 < y, < 1 -  5/4, and 5/2 < 2/5. For "small" values of 5 this would 
be the main part of points, namely 1 -  55/4 of all points. Obviously each 
of these points has 5/2 of all points as neighbors, with distance less than 
e/2, using the maximum norm. Hence, the contribution of this part of 
points to the correlation integral is 5/2 - 552/8. The contributions of the rest 
of the points, which are characterized by 0 < Yt < e/4, 1 - 5/4 < Yt < 1, and 
1 / 2 -  3e/8 < y, < 1/2 + 3e/8, is easily found to be 552/4. Summarizing, we 
obtain C2,~/2(1)=5(1/2+ 55/8). Moreover, we should set C~,,/2=e [see the 
arguments following (22)]. According to (24), we now obtain 

I ]2)(1 ) ~- log C2.,/2(1 )/e 2 = log e -  1(1/2 + 5e/8) 

which approaches - l o g  e - log 2 = H I  2) - log 2 for small e. Note that log 2 
is the metric entropy off ,  resp. g. On the other hand, it is well known that 
the correlation function (2) equals zero for ~ = 1, 2, 3 .... (see, e.g., ref. 11). 
Hence this example demonstrates that, in general, cot is no appropriate 
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indicator of statistical dependences--even in the deterministic case 
X,+~=f~(X,) the variables X~ and X,+~ might be 6-correlated! On the 
other hand, the generalized mutual information describes the relation 
between X, and X~+ t rather well, and even between X, and X,+ ~, z > 1, as 
the following, more general example shows. 

E x a m p l e 4 :  Chaot ic  1D Map. Suppose a 1D map f :  [ 0 , 1 ]  ~ 
[0, 1 ], which should generate chaotic signals {x, =f(x ,_  ~)} ,r= 1 for almost 
all initial conditions xo with respect to a corresponding f-invariant 
measure. Moreover, assume that the delay representation for time lag 1 of 
the relative rank numbers of the orbit can be described for large values of 
the length T by the graph of a map g in the unit square [0, 1] x [0, 1]. 
Then g has the Lebesgue measure /~L as invariant measure. Suppose now 
that g is continuously differentiable at y e [0, 1 ], except possibly at a finite 
number of points. Then we obtain for the absolute value of the slope 
Ig'(Y)l >1  for almost every y e  [0, 1], where g'(y)=dg(y)/dy. We con- 
clude this from the g invariance of Lebesgue measure: /ZL(g I (B))=/2r(B)  
for any Borel set B _  [-0, 1 ]. In terms of the invariant density Qg this means 

Og(y) = 1 = ~ [g'(y;)[  -* 
Yi: g (Y i )  = Y 

For sufficiently small values of e we find that a point (y, g(y))e 
[0, t ] x [0, 1 ] has the relative part of e/[ g'(Y)t neighboring points with 
distance less than e/2 (using maximum norm in N2). Thus we obtain in 
total C2,~/2(1) = e ~ Ig'(y)1-1 dy. 

A similar formula, in which g is replaced by g~ = g o g~- 1, z = 2, 3,..., 
can be obtained for C2,~/2(z). From (24), with C1.,/2 ~-e, we finally obtain 
I~2)(z) ~ - l o g  e + log ~o 1 Jdg~(y)/dyJ-1 dy for e ~ 0. This expression can be 
rewritten using the relation ]dg~/dyl _~ 2 a', which holds for large r. Here 2 
is the Lyapunov exponent or metric entropy of order 1 of g (resp. f ) ,  
measured in bits per time step, resp. per iteration. Now we obtain I]2)(z) ~- 
- l o g  e -  2z log 2, which should hold for sufficiently small e and large r. 

Example  5: Numer ica l  Result  for  the  Quadra t i c  Map .  The 
general result of Example 4 corresponds to that of Example 3, where 2 -- 1 
bit/iteration. Moreover, in the case of the tent map, which is conjugate to 
the quadratic map, we have [dgVdy[ = 2 ~ for v = 1, 2, 3 ..... and hence we 
expect I]2)(z) -_ - l o g  e - r log 2, for sufficiently small e. Figure 1 reflects 
the linear decay of the generalized mutual information. However, the 
curves were numerically obtained from the data {xt}, r_ 1, T =  8192 = 213, 
generated with the quadratic map xt+ 1 = 4xt(1 - x , ) ,  x0 = l/re, applying the 
proposed first method: we first transformed the data according to (27) to 
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G e n e r a l i z e d  mutual information of a chaotic time series generated by the quadratic 
map x,+l= 4xt(1 -x , )  of Example 5, applying our first method. 

get the series (26) of relative rank numbers  having a uniform one-dimen- 
sional distribution. Then  we estimated the generalized mutual  information 
(12) for D = 1 using the G P T A  to estimate (20) and using the relation (23). 

In the figure we used a normalized representation 1~2)('~)/I~2)(0) with 
I~2)(0) = - l o g  8. Hence we would expect that  I~2)(T)/I~2)(0)= 1 +z / log2  8 
for ~ ~ 0. However,  if e is fixed, e.g., at 2 9, then e cannot  be considered 
to be small if z ~ 9 or  ~ > 9, and the above formula, describing a linear 
decay of the mutual  information,  no longer holds. In this case the "initial" 
error  e is spread, on an average, over the whole interval [-0, 1] due to the 
exponentially expanding action of the chaotic  map. Hence we would expect 
i~2)(z) = 0  for z > - l o g 2  8, which is the situation of  "white noise" con- 
sidered in Example 1. There we have found that  the use of  the correlat ion 
integral f rom the G P T A  to estimate the mutual  information i~2)(v) leads to 
a systematic underest imat ion of the mutual  information:  

1~2)(z)/I~2)(0) ,,~ log(1 - 8/2 + e2/16)/log e 1 ~ log(1 - e/2)/log g - t  < 0 

This explains the negative values of the mutual  information in the cases 
8 = 2 - 5  and 2 6. For  instance, take 8 = 2-5 ;  then we obtain from the above 
formula a systematic error of l o g 2 ( 1 - - 2 - 6 ) / 5  =-0.00454...; which rather 
well matches the obtained deviations illustrated in Fig. 1. (For  ~ > 10 the 
upper  lines correspond to e = 2 -s ,  2-6.) However,  for smaller values of  e 
the deviations of the mutual  information from zero are first of  all caused 
by statistical errors due to the finite length of the time series. This leads 
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Fig. 2. Decay of the generalized mutual information of a time series obtained from a chaotic 
two-band attractor of the quadratic map of Example 5. P a r a m e t e r :  I ] 2 ) ( 0 )  = -log 2 e. 

especially for r >/16 and e = 2 9 2 8 (the two lower lines in the figure) to 
considerable variations of the curves. When we used another realization of 
the chaotic orbit with the same length, then sometimes we found these 
variations to be much smaller. 

Finally, Fig. 2 shows our results for the nonmixing chaotic map 
x,+ 1 = 3.64 x xt(1 - xt), which generates for "typical" initial values Xo 
orbits on a chaotic two-band attractor with a Lyapunov exponent of 
2=0.333 +0.002 bit/iteration. The two upper curves corresponding to 
e = 2 9 and 2-8  show again rather large statistical fluctuations, which are 
due to the finite data length of T =  213. However, for e = 2 s, 2 6 and 2 7 
(three lower curves) the decay rather well matches our general considera- 
tions of Examples 2 and 4: For small values of the time lag r (1 to ~5)  
the decay rate is well described by ), (indicated by the dashed line at the 
mean curve with e = 2 7). Then we have a region of a slower decay which 
is due to "foldings" ( ~ 5  < r < ~35), and finally the curves approximate 1 
bit, which is the asymptotically remaining information on the band of the 
two-band attractor containing the future state ( r >  ~35). Actually we 
slightly underestimate the value of 1 bit, due to systematic errors. They 
can be derived similarily to that described in Example 1, recognizing 
that for r ~ o o  the points (rt, r,+~) of the rank delay representation 
can be considered as uniformly scattered over ( [ 0 , 0 . 5 ] x [ 0 , 0 . 5 ] ) w  
( [ 0 . 5 , 1 ] x [ 0 . 5 , 1 ] )  if ~ is even, and over ( [ 0 , 0 . 5 ] x [ 0 . 5 , 1 ] ) u  
([0.5, 1] x [0 ,0 .5])  if r is odd. 
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4. SECOND METHOD:  M U T U A L  A C C O U N T  

D e f i n i t i o n .  Suppose a stationary discrete time series {Xt}, where 
X, attains one of k possible different values. ({X,} could be considered as 
a coarse-grained version of a continuous series {Yt}.) Let {pm.(O, ~)}m. 
denote the joint probability distribution of (X,_ o, Xt+,), and hence the 
distributions of Xt_ o and Xt+, are given by p m ( O ) = Z ,  pm.(O, r) and 
P.(~) = ~]m pm.(O, X), respectively. 

Now we define a quantity which is somewhat similar to the con- 
tingency (7), 

k 

~ ( ~ ) -  ~ [pm.(O, ~)--pm(O) p.(r)]2 (29) 
m , . - -  1 

It can be rewritten as 

2 2 2 2 , , SmSn ~D(~) = Sin. - 2S . . . .  + (30) 

using the abbreviations 
k k 

Y. 2 = Pm.(O, X), (31) 
. a , n ~  1 

k 

Z s .  Z 
m - - 1  n = l  

k 

S . . . . . .  = ~ pm.(O,~) pm(Olp.(~) (32t 
m , n ~ l  

To get a logarithmic scale we derive from (29) a new quantity, which we 
call "mutual account," 

r cb2('c) 1] (33) 
AD(~) =l~  L ~ +  

It can be rewritten as 

AD(z)=log[sS2sn--5-~2+ 2(1  S ~ n ' ) ;  (34) 

Properties. From (29) and (33) we see that AD('C))O, where the 
equality holds if and only if X,_ o and X,+, are statistically independent 
[i.e., iffPm.(O, Z)= pm(O)p.(Z) for all m and n]. 

M oreover, we always have S 2 n ~ S 2 and S . . . . .  J S m t ~ 2  

[P.,min, P . . . . .  ], where P.,min = min{pn} and p . . . . .  = max{p.}. From this 
we obtain the following estimation of an upper bound A*(z) of the mutual 
account (34): 
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provided that the argument of the log is positive. If p . . . . .  >~> P. ,min and 
1 ,,~ 2p . . . . . .  then formula (35) is not a valuable estimation. However, the 
typical situation in the following will be that p . . . . .  ~ 1, and even p . . . . .  ~ 0 
for e--+ 0, where e is a distance parameter  in the algorithm to estimate the 
mutual  account which is described below. Moreover, for p . . . . .  --+ 0 we also 
have $2. ~ 0 and hence we obtain from (35) 

A*(r)  ~- log 2 +  ---log for p . . . . .  --+0 (36) 

follows unequivocally Consider now the deterministic case where X t+ 
from X,_ o. Thus we have pm.(O, ~ )=  pro(O) for exactly one n = n(m) and 
pm.(O, ~ )=  0 for the other n r n(m). Hence we obtain $ 2 .  = S 2, S . . . . . .  = 
Y, , .pZ(O)p.~ , . ) ( 'c ) ,  and again S . . . . . .  /SZm~[Pn, min, P . . . . .  ] .  Thus the 
mutual account can be estimated in the deterministic case as in (35), 
resp. (36). 

Summarizing, we have shown the following theorem: 

Suppose a stationary discrete time series {X,}, where the random 
variable X t attains one of k possible different values. Then the mutual 
account, defined in (33), between a D-dimensional vector of "past" states 

X,  o = ( X ~ _ o o  ~,...,X~ o 0 ) ,  D = 1 , 2 , 3  .... 

OD_~>  .. .  > O 1 > O o = 0  

and a d-dimensional vector of "future" states 

XFq_T=(XI_~_.CO ..... Ytq_Td 1) ' d=1,2,3,..., 0 < % < r l <  - - -  < ~ a - 1  

satisfies the relation 
0 ~< AD(x) ~< A*( , )  (37) 

where the upper bound A*(~) can be estimated according to (35), resp. 
(36). Moreover, AD(Z)=0 if and only if Xt_ o and X,+~ are statistically 
independent. In the deterministic case, where X ,+ ,  follows unequivocally 
from Xt_ o,  we have AD(~) =A*(~).  

If we ask for only one future state (i.e., if d =  1 and hence t = r o = ~) 
and if Xt is uniformly distributed with p ,  = e, then we obtain S . . . . . .  = eS2m, 

2 S .  = e, and hence from (14) we deduce AD(T)= I~)(~). 
Consider now the case D = d - - 1 .  Here we have m = m o = m ,  

2 2 n = n o = n, and S m = S , .  Thus we obtain for the mutual account 

Al(Z) = log [_($2m)2 + 2 1 (38) 
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Moreover, for r = 0 we have p,,,, =Pm if m = n and zero elsewhere, and 
2 2 thus S m , = S  m, S . . . . . .  = Y ~ m p 3 = S 3  m. This motivates us to set AI (0)=  

l o g [ l / S 2  + 2 3 2 2 - -  2 S m / ( S m )  "]. 

E s t i m a t i o n  o f  AD(T).  Suppose a continuous ergodic time series 
{ Yt},T=t. Then the sums (31) can be estimated from a data sequence using 
the GP TA with a (D + d)-, D-, and d-dimensional embedding of the 
original data, respectively (see Section 3). However, estimating (32) is 
somewhat more difficult and will be discussed now. 

Given the data sequence {yt}tT=t, construct a triple of (D+d) - ,  D-, 
and d-dimensional points at the instants t~, t2, and t3, 

Y,, o.,,+~=(Y,,-o~, ,,..., Yt,-Ol, Y,,-eo, Y,,+~o, Yt,+q,'", Yq+~a 1) (39) 

Y,2-0 = (Y,2-o~ ~,..., Yt2-Ol, Yt2-Oo) (40) 

and 

Y,3+, = (Y,3+,0, Yt,+q ..... Y,3+~a-x) (41) 

They are defined for OD ~ < t l < ~ T - - z a - t ,  OD l< t2~<T,  and 1 - ro~< 
t 3 ~ T - - z d  1. Note that Y , - e  and Yt+, can be considered as a D- and 
d-dimensional projection of y,_ e,, +,, respectively. Assume that the data 
are standardized with real values between 0 and 1, and cover the D- and 
d-dimensional embedding of the data according to (40) and (41) with 
e-partitions riD, ~ = {Bm} and fla,~= {B.} in a similar way as in (17). 

Consider now an arbitrary point Y,1 o,,~+~. Then its projections 
Y,I o e Bm(,~) and Y,I+~ e B.u~. The probability PmUl) for finding a point 
Y,~ o in Bmu,) can be estimated in the presumed ergodic case analogous 
with (18), 

T 

Pm(t,)(O)~CO,~/Z(tl)---- l i m  T -1 ~, ~ ( e / 2 - I I Y , I - o - Y , 2 - o I I  . . . .  D) 
r~oo ,2=1+oo-1 (42) 

where II-]1 . . . .  # denotes the maximum norm in RD. Similarly, we estimate 
the probability P-(,l) for finding any point Y,3+~ in B.{,,~ 

T - - z d - t  

p.( , , )(~)~ca,~/2(t l , ' t )= lim T i ~" ~ ( e / 2 - l l y , , + = - y , , + J I  . . . .  d) 
T ~ r  

t 3 = 1 (43) 

Consider now the time average 

T- -  7;d_ i 

KD, d,e/2('r = lim T 1 
T ~  t I = I + O D _  l 

= (co,~/2(tl) Ca,,/e(tt, "Q)q 

cD,,/2(t,) c~,,/2(tl, ~) 

(44) 
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which can be written as 

with 

KD, d,e/2('C) = l i r a  KD, cl, e/2, T(T)  
T ~  oo 

 o, J2Tt  =N o l t2, 31With",,lO--,,20'l . . . .  

and,y,1+.  . . . .   45, 

and Nto t a  I lS now the total number of triples (tl, t2, t3). 
Making use of the presumed ergodicity, (44) can be obtained alter- 

natively from a space average. Considering also (42) and (43), we thus get 

k 

Kz~,j,~/2(~)- Z Pm-( O, ~) pro(O) p.(X) for e ~ 0 (46) 
Ill, n-- 1 

Summarizing our proposals, we obtain from (34), (22), and (46) 

AD(X)~--logFCD+a'42(X)+2(1--Kz~'d'~/2(X)~] for e,--, 0 (47) 
/ \ I l L _  C D, ~/2 Cd, e/2 CD, e./2 Cd, e../2/j 

where the correlation integrals are defined as in (19), but now with the 
embedding according to (39)-(41) to estimate CD+a,~/2('C), CD,~/2, and 
C a,~/2, respectively. 

For d =  1 we g e t ,  = To = ~, and formula (47) could be compared with 
that of the generalized mutual information in (24). The additional term in 
(47) vanishes if the one-dimensional distribution of the time series is 
uniform. 

In the most simple case, where D = d =  1, we get ~ = v0 = z, and 

A ' ( v ) ~ - l ~  1 for ,4s, 
L C 1, e/2 C 1, t~/2 / A 

which should be compared with (38). 

Example 6: Mutua l  Account  of a Chaotic 1 D Map.  Suppose 
a 1D map f :  [0, 1]-+ [0, 1], as in Example4 of Section 3. f should 
generate a chaotic sequence {xt =f(x,  1)} ~~ for almost all initial condi- 
tions xl with respect to a corresponding f-invariant measure, which is 
assumed to be absolutely continuous with respect to Lebesgue measure. We 
denote the corresponding density function by O. Moreover, we assume that 
f is continuously differentiable almost everywhere. 
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In order to estimate the mutual account (48), let us first derive an 
expression for C1,~/2. Obviously we have, for sufficiently small values of ~, 
a relative part 0(x) dx of points in the sequence {x,} F=I, each of which has 
a relative part of cO(x) neighbors with distance less than E/2. Hence we 
obtain in total 

Cl,e/2 "~ g. f 0 2 ( x )  dx for e 0 (49) 

To get an expression for C2,E/2(1), we have to distinguish between the two 
cases [f '(x)[ = [df(x)/dx[ > 1 and [f'(x)] < 1. The relative part Q(x)dx of 
points in the sequence {(xt, f(x,))}~_o has, in the first case, a relative part 
of eO(x)/[f'(x)[ points of g/2-neighbors, and in the second case a relative 
part of eQ(x). Hence we obtain in total 

[ f ' ( x ) [  > 1 [ f ' ( x ) [  < 1 

for e ~ O  (50) 

Finally we have to estimate K1,1,~/2(1): Obviously the relative part 
O(x)dx of points (x,~,x,~+l) from the sequence {(x,f(x,))},~=o has a 
relative part of eO(x) of points x,2 of {x,},~_l with ]x~,-x,21 <e/2, and a 

x ~ with Ix,~+l-X,3[ <e/2. Hence relative part ~o(f(x)) of points x,3 of { ,},= 1 
we obtain in total 

Kl,,,~/2(1)~-g2fO2(x)o(f(x))dx for g--+O (51) 

Inserting (49)-(51) in (48) would provide the mutual account AI(1). 
Supposing a uniform distribution, which is characterized by Q(x)= 1, 

we easily obtain from (49) C1,~/2 ~-e and from (51) K1,1,~/2(1)-~e 2. From 
(50) and the fact that f m u s t  be expanding almost everywhere (see remark 
in Example 4 of Section 3), we finally obtain C2,~/2 ~- e S If '(x)1-1 dx. Using 
this expressions in (48), we get for the mutual account AI(1)~- - l o g  e+  
log S If ' (x)l  1 dx. The same consideration can be done f o r f  ~, z = 1, 2, 3 ..... 
yielding the more general expression 

A~(T) ~-- --log e + log f [df~(x)/dx1-1 dx 

which holds if f is uniformly distributed in [0, 1 ]. This result coincides with 
that of Example 4 for the generalized mutual information I]2)(~), which is 
not surprising, given the background of the remarks following the above 
theorem. 
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Mutual account of a chaotic time series generated by the quadratic map of x,+ ~ = 
4 x , ( 1 - x , )  of Exampe 5, applying our second method. 

Example 7: Mutual Account of the Quadratic M a p - -  
Numerical Result. For the quadratic map of Example 3, Eqs. (46), 
(50), and (51) are not useful expressions, because they diverge for the 
corresponding invariant density Q(x)= 1/(r~[x(1- x)]1/2). Nevertheless, we 
can apply in this case the proposed numerical method to estimate A1(*) via 
formulas (48), (44), and (20). Figure 3 shows the corresponding results for 
the same data we used in Example 5 (Fig. 1) to estimate the generalized 
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Decay of the mutual account of a time series obtained from a chaotic two-band 
attractor of the quadratic map of Example 5. 
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mutual information. A comparison of both figures shows that the mutual 
account also rather well describes the decay of statistical dependences. For  

> - l o g  e it approaches almost zero as well, where the deviations from 
zero are first of all due to statistical errors. (For a more detailed argument 
see Example 5.) 

Moreover,  Fig. 4 shows our results for the same signal used in Fig. 2. 
The distance parameter  e is measured in units of the distance between max- 
imum and minimum of the data. Again we obtain asymptotically "1 bit," 
which is the information on the band of the two-band attractor containing 
the future state which is far away. The decay of the mutual account for 
small values of the time lag ~ behaves like a zigzag, reflecting the fact that 
the two bands of the chaotic at tractor  are of different magnitude. This is an 
effect which cannot occur in Fig. 2 because there the date have a uniform 
marginal distribution due to the applied transformation. 

5. C O N C L U S I O N S  

We have proposed two methods to measure statistical dependences in 
a time series. The methods are applicable, in principle, to continuous 
ergodic time series. However, in practice, it would be sufficient to have 
discrete data with an accuracy of, say, at least 8 bits (i.e., the data should 
attain at least about  28= 256 = e 1 possible different values), and the data 
record should have a length of at least some thousands of points. 

Of course, the data requirements depend on several circumstances. For  
instance, if we ask for statistical relations on a precision level e, then our 
data have to be recorded with an accuracy of more than - l o g 2  e bit. If  the 
one-dimensional distributions of the data is not uniform, then the accuracy 
of the data record might have to be even much more than - l o g 2  e to make 
our first method applicable. 

Finally we want to mention that our methods also can be applied to 
measure cross-statistical dependences between different time series instead 
of relations within a single time series. In this case we have to transform 
each time series to a uniform one-dimensional distribution to apply our 
first method. In a forthcoming paper  ~12) we will describe fast algorithms for 
the proposed methods. 
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